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In the large-N limit, O(N)-invariant models become exactly soluble due to 
factorization properties first emphasized by Migdal and Witten. It is shown that 
in this limit, the Langevin equation of stochastic quantization offers a direct and 
simple determination of the mass gap. The method is applied to different bosonic 
and fermionic models. 

1. INTRODUCTION 

The method of stochastic quantization, introduced by Parisi and Wu 
(1981), provides an alternative to standard methods of quantization in Euclid- 
ean quantum field theories. It is based on the purely classical Langevin 
equation well known from the theory of Brownian motion. 

Stochastic quantization is currently widely used and is of particular 
interest to study some properties of quantum field theories in the large-N 
limit. This became apparent after some rather spectacular developments in 
lattice gauge theories (Eguchi and Kawai, 1982), and the proof of quenching 
properties associated to certain sets of fields (Bhanot et al., 1982), dubbed 
master fields. Exact solutions exist for these master fields (Greensite, 1983; 
Greensite and Halpern, 1983). Alfaro (1984; Alfaro and Sakita, 1983) obtains 
them using ans~itz where invariant quantities built out of reduced fields are 
independent of the Langevin noise. 

Our purpose here is to recover the large-N limit directly from the 
Langevin equation using only the factorization property. In Section 2 we 
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briefly review the formalism of stochastic quantization. Then the method is 
detailed in Section 3, with the O(N) +4 and Gross-Neveu models as illustrating 
examples. It is shown further in Section 4 that it can be extended to cases 
with more than one interacting fields, a particular case being the Hubbard- 
Stratanovitch auxiliary field procedure. Scalar fields with constraint and the 
multiple-field model of Zinn-Justin (1991) are considered. 

2. STOCHASTIC QUANTIZATION 

According to Parisi and Wu (1981) the Euclidean path integral measure 

exp(--SE[~]) (1) 

is considered as the equilibrium distribution of a stochastic process in an 
extra variable, the fictitious time t. 

The evolution in this new variable is governed by a Langevin equation: 

0+(x, t) 8SE[+] 
- -  - -  - -  + " q ( x ,  t )  ( 2 )  

at B+(x,  t) 

Here SE is the classical action and "q is a white Gaussian noise, i.e., a random 
field with first moment zero and second moment 

('q(x, t ) 'q(x ' ,  t'))~ = 28(t - t ' )~D(x -- X')  (3) 

The principal assertion concerns the limit t ~ oo: the equilibrium distribu- 
tion of equation (1) is reached, and all equal-time correlation functions tend 
to the corresponding quantum Green functions, i.e., 

(+(x~, t) . . .  +(x , ,  t))n = (+(x l )  "'" qb(x,)) (4) 
t--~er 

For O(N)-invariant models, an interesting simplification occurs in the 
large-Nlimit: the factorization property which was first emphasized by Migdal 
(1980) and Witten (1980). Vacuum expectation values of O(N)-invariant 
products of operators become free of fluctuations, i.e., 

This property is unmysterious when one recalls the classical nature of the 
saddle point solution of the partition function, which is exact in the limit 
N ---~ c~. 

Alfaro (1984) has generalized this property to the stochastic quantization 
scheme. It reads 
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In particular, 

(I~i Ai[qb])~ N~= I-[i (Ai[~b])n (6) 

(A2[+])~ = ((A[qb])n) 2 (7) 
N.--)~c 

Since the noise measure is positive, we have then 

Hence in the 
independent. 

lira A[~b] = (A[qb]).~ 
N---~ 

large-N limit, every O(N)-invariant functional is noise 

3. L A R G E - N  L I M I T  O F  T H E  11~4 A N D  G R O S S - N E V E U  M O D E L  

The Euclidean stochastic action of  the O(N) I~) 4 model reads 

Si,] = I dDx dt[ l o~+(x, t)O~dO(x, t) 

where 

X q 
+ mZd~Z(x, t) + | z 4.~ +4(x' t)_t (8) 

N 

~bZ(x, t) = ~ ~bi(x, t)~bi(x, t) 
i=l  

The Langevin equation is then 

Ot 
m O~bi(x, t) _ (D - mZ)+i(x, t) - - ~  +2(x, t)d~i(x, t) + xli(x, t) (9) 

In this context the factorization property implies 

+Z(x, t) = (~bZ(x, t))~ = ~r(t) (10) 
N----)~ 

where translational invariance of the Green functions has been used. 
Hence in the only relevant limit of asymptotic times, ~(t) tends to its 

equilibrium value ~r0, and in this regime of large N and infinite time, the 
Langevin equation is 

m O+i(x, t) _ (I~ - m2)d~i(x, t) - 3 i~  cr~ t) + "qi(x, t) ot (11) 



1 9 1 8  B~rard, Grandati, Grange, and Mohrbach 

where 

lim or(t) = Cro 

This linear equation can be solved in the usual way. It is easy to see that the 
initial conditions disappear in the t ---) ~ limit and the two-point correlation 
function is obtained as 

lim +i(x, t)d~i(x, t) = x = (12) 
t--+~ i =  1 q-  m 2  q-  (M6N)cr0 x cro 
N---~,~ 

With 

equation (12) reads 

h 
E0 = m 2 + ~ - - ~ o  (13) 

x I a~ 1 ~ 0 =  m 2 + g j ( 2 v ) O p 2  + ]~0 (14) 

This is the well-known gap equation for this model. 
This straightforward method can also be used for fermionic models. The 

most simple example is the Gross-Neveu model. In this case the Euclidean 
stochastic action is 

S[~ l = d2x dt --~(x, t)iJO(x, t) + ~-N (-~(x, t)O(x, t)) 2 (15) 

where spins and internal symmetry indexes have been omitted. We have now 
two "conjugate" Langevin equations: 

_ g2 
FOl~i(X, t) ~ t~i(X, t) -- (-~(X, t)O(X, t))t~i(X, t) + "qi(X, t) 

Ot -N 
O"~i(X, t) _ +-~(x, t) ~ g2 (16) 

I ot - ~ ~;(x, t)(-~(x, t)~(x, t)) + ~i(x, t) 

In the large-N limit, using as before factorization and translational invariance, 
we obtain 

N 

lira ~] ~i(x, t)~i(x, t) = or(t) (17) 
N ----~ c~ i=1 

Focusing on asymptotic time behavior, where 

lim or(t) = or0 
l--~oo 
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we deduce 

lim dJ,(x, t)-~i(x, t) = ~ x _ ~  + ~2/N)c r ,~ = ~0 (18) 
; 2 2  ' : '  ~  

Here the sum is on the spin indices. 
With 

ig 2 
~0 = -~- cr0 (19) 

the usual gap equation for the Gross-Neveu model is retrieved: 

I d2p 1 
1 + 2g ~ (2~r)2 p2 + ~-------~ - 0 (20) 

4. LARGE-N LIMIT FOR MODELS COUPLING BETWEEN 
DIFFERENT FIELDS 

The method of the preceding section can be adapted to take into account 
the presence of multiple fields. It enables us to recover the large-N behavior 
without any supplementary difficulties. 

4.1. +4 and G r o s s - N e v e u  Model s  with Auxi l iary Fields 

The well-known Hubbard-Stratanovitch stratagem, which introduces an 
auxiliary field ~(x), renders the partition function Gaussian in the original 
fields. It is then possible to perform the integral over these fields. In stochastic 
quantization the auxiliary field acquires a fictitious time dependence and the 
effective action of the ~b 4 model now reads 

S~ff[dp, crl = d~ dt OSp(x, t)8~gp(x, t) + ~ m2dp2(x, t) 

+ . t) +  2(x, t) (21) 

+(x, t) and or(x, t) are then considered as two coupled stochastic fields 
governed by the following Langevin equations: 
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O+i(x, = (t3 - m2)+i(x ,  0 - i _~2 or(x, t )+i (x ,  t) + T~i(x, ~) (22) t) 
o 

Oct(x, t) N 
[ Ot -(~ or(x, t) - i +2(x, t) + 0(x, t) (23) 

where 0 and "qi are (N + 1) independent Gaussian white noises. If we take 
the mean value of (23) at the equilibrium limit t ~ 0% we find 

0 = -~22 (or(x))~qo- i - ~  (+2(x))~0 (24) 

Since the +-quantum Green functions are translational invariant, we must have 

lim (+2(x, t))~0 = - i  ~ lim (or(x, t))~0 = tro (25) 
t-->oo l-..).oo 

Following Section 3, the factorization property for O(N)-invariant form 
implies 

I +Z(x, t) = (+2(x, t))~0 
N--.+cr 

[ ~(x, t) N-~= (or(x, t))~0 
(26) 

Using these results in the large-N limit and for asymptotic time behavior, we 
can linearize and easily solve equation (24). We deduce then 

lim +i(x ,  t )+i(x ,  t) = x [] m2 - - -  x = ~o 
, ~  i=1 0 - - i(x/~/6)cro 
N-->wa 

(27) 

or  

xf d~ 1 
~0 = m2 + g (2rr)o p2 + ~o 

where 

E o =  m 2 + i ~ t r o  

For the Gross-Neveu model, the procedure is the same and we only 
give the main steps of the calculus. 

The effective stochastic action reads 
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Seff[+, ~,  or] = f[ a2x dt|--~(x,F t)Jt~(x,  t) + ~ crZ(x, t) 2g 2 
J 

7 

+ i~(x, t)+(x, t)cr(x, t)] 

The leads to the Langevin equations 

"Ot~i(x, t) _ -~ t~i(x, t) - Rr(x, t)qJi(x, t) + xli(x, t) 
Ot 

O-~i(x, t) _ ~i(x, t) ~ - i-~i(x, t)cr(x, t) + ~i(x, t) 
Ot 

Oct(x, t) _ N 
Ot g2 ~(x, t) - ida(x, t)t~(x, t) + O(x, t) 

(28) 

(29) 

Under the same arguments one finds 

N~lim(~i = 1111i(X't)'~i(X't)).q 0 
l - ->~ 

= x _ ( ~ ) 2  + o'~ x (30) 

and 

O= --~Yo--ilim (~-~i(x,t)~Ji(x,t)tn 
N--->:o i = t 0 

(31) 

thence the gap equation 

1 + 2 g  a (2rr)Zp2 

where ~;o = icro. 

+ Eo 
- 0 (32) 

4.2.  C o n s t r a i n t  Mode l s :  N o n l i n e a r  cr a nd  CP N-1 Model s  

In these models the constraint on a free O(N) or U(N) scalar field appears 
under the form of a Lagrange multiplier field in the action. For the nonlinear 
cr model it reads 

-1  

+ h(x, t)(d~2(x, t) - 1) 1 (33) 

This Lagrange multiplier must be treated as a stochastic field with a specific 
Langevin equation 
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I Odpi(x, t) 1 Ot = g2 (D~bi(x, t) - ~k(x, t)dpi(x , t ) )  h- "qi(x, t)  (34) 

aX(x, t) 1 (+2(x, t) - 1) + 0(x, t) (35) 
L ~- 2g2 

where 0 and -q~ are independent Gaussian white noises. 
As before we can put 

lim X(x, t) = Xo (36) 
N --~o  
t---)~ 

in (34), and we obtain 

liNm (~__l (+i(x, t)+i(x, t))~o) = (x  u~gho x t  (37) 

In these limits (35) is nothing but the always true equation of constraints: 

N 
(+i(x, t)+i(x, t)),qo = 1 (38) 

i = 1  

Then we arrive at the gap equation 

f d2p g - 1 (39) 
(2,rr)2 p2 + ho 

In the case of the CP u- 1 model the symmetry is U(N) and the procedure 
is still the same. The effective action is 

f , Self[Z, Z§ = d2x dt -~ [O~z(x, t)O~z+(x, t) 

+ (z+(x, t)O~z(x, t)) z + h(x, t)(z+(x, t)z(x, t) - 1)] (40) 

and therefore 

Ozi(x, t) _ 
c3t 

Oz+(x, t) 
Ot 

Oh(x, t) _ 
Ot 

1 g2 [I"Izi(x" t) -- X(X, t)zi(x, t) 

+ 2(z+(x, t)a~z(x, t))a~zi(x, t)] + -qi(x, t) 
1 

g2 [Dz+( x, t) - X(x, t)z+(x, t) 

+ 2(Z(X, t)O~Z+(X, t))O~Z+(X, t)] + ~i(x, t) 
1 

g2 [z§ x, t)z(x, t) - 1] + 0(x, t) 

(41) 

and we rapidly find 
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f d2p g2 
1 = (2T02 p2 _f_ h-O (42) 

4.3. The Model  of  Zinn-Just in 

Recently Zinn-Justin (1991) proposed a new model which has the same 
chiral and U(N) properties as the Gross-Neveu model, and whose stochastic 
action is 

S[,,~,< = f dDx dt[ - -~(x ,  t)(iJ + gcr(x, t))*(x, t) 

m 2 h ] 10~(x, t)O,~(x, t) + -~ O'2(X, t) "~ ~I O'4(x' t) (43) 

The main interest of this model is its renormalizability in four dimensions 
and the fact that at the tree level, when m 2 is negative, the chiral symmetry 
is spontaneously broken by the ~r expectation value, which gives also a mass 
to the fermions. 

This action leads to the following Langevin equations: 

t) 
- ~ qJi(x, t) + go(x, t)t~i(x, t) + "qi(x, t) 

Ot 

O-~i(x, t) _ ~(x, t) i~ + get(x, t)~i(x, t) + ~i(x, t) (44) 
Ot 

O~(x, t) 
(D - m2)cr(x, t) - ~7 cr3(x, t) + g-~(x, t)t~(x, t) + O(x, t) 

Ot 0 

With the same method as above we arrive at the two equations 

lim be(X, t)t~i(x, t) = x �9 x 
N---~c~ i = 1  0 - ~  + gcro 
t - - r~ a a  

and 

0 = -m2cr0 - g cr 3 + g lim t~i(x, t)~i(x, t) 
N - - ) ~  i= 1 0 
t--)oz 

Therefore 

h c~ - N KDg 2 f d~ or~ = 0 
m2~ q- 6 (2w)D p2 + (Y0 

where Ko is the trace of the identity matrix. 

(45) 

(46) 

(47) 
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If we rescale for convenience g(ro in ~r0, we recover the equation given 
by Zinn-Justin (1991): 

m 2 X f dDp cr o 
- -  ~r o + - -  (r3o - N K o  j p2 
g 6g 4 (2'rr) ~ + (r0 

- -  - 0 (48)  

5. CONCLUSION 

In this paper we have used stochastic quantization for some well-known 
models in the large-N limit. It is shown that one can easily retrieve the gap 
equation of all models considered from the factorization property only, This 
method is less involved than Alfaro's approach and appears much simpler. 
It is also a more direct way to the result than the saddle point method 
from path integrals, because stochastic quantization enables us to extract all 
information about the complete quantized field theory from a classical type 
of evolution equation. 

Clearly this method is quite pedestrian and can certainly be applied to 
more complex models. We have already shown elsewhere (Grandati et aL, 
1992, 1993) that for the O(N),b 4 model with finite N, the variational stochastic 
solution can be built recursively by a 1/N expansion. We have also derived 
explicitly from this variational equation an integral equation from each term 
of the 1/N expansion of the mass operator. The general form of its solution 
is obtained analytically. With the introduction of stochastic auxiliary fields, 
especially by the Hubbard-Stratanovitch procedure, new and simpler investi- 
gations of variational method in stochastic quantization are feasible. In partic- 
ular one may envisage the study of fermionic, constrained, and Zinn-Justin 
models using a variational stochastic principle (B6rard et al., n.d.). 
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